Serveur d'exploration Santé et pratique musicale

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Variability of Movement Disorders: The Influence of Sensation, Action, Cognition, and Emotions.

Identifieur interne : 000106 ( Main/Exploration ); précédent : 000105; suivant : 000107

Variability of Movement Disorders: The Influence of Sensation, Action, Cognition, and Emotions.

Auteurs : Rok Berlot [Slovénie] ; John C. Rothwell [Royaume-Uni] ; Kailash P. Bhatia [Royaume-Uni] ; Maja Kojovi [Slovénie]

Source :

RBID : pubmed:33332680

Abstract

Patients with movement disorders experience fluctuations unrelated to disease progression or treatment. Extrinsic factors that contribute to the variable expression of movement disorders are environment related. They influence the expression of movement disorders through sensory-motor interactions and include somatosensory, visual, and auditory stimuli. Examples of somatosensory effects are stimulus sensitivity of myoclonus on touch and sensory amelioration in dystonia but also some less-appreciated effects on parkinsonian tremor and gait. Changes in visual input may affect practically all types of movement disorders, either by loss of its compensatory role or by disease-related alterations in the pathways subserving visuomotor integration. The interaction between auditory input and motor function is reflected in simple protective reflexes and in complex behaviors such as singing or dancing. Various expressions range from the effect of music on parkinsonian bradykinesia to tics. Changes in body position affect muscle tone and may result in marked fluctuations of rigidity or may affect dystonic manifestations. Factors intrinsic to the patient are related to their voluntary activity and cognitive, motivational, and emotional states. Depending on the situation or disease, they may improve or worsen movement disorders. We discuss various factors that can influence the phenotypic variability of movement disorders, highlighting the potential mechanisms underlying these manifestations. We also describe how motor fluctuations can be provoked during the clinical assessment to help reach the diagnosis and appreciated to understand complaints that seem discrepant with objective findings. We summarize advice and interventions based on the variability of movement disorders that may improve patients' functioning in everyday life. © 2020 International Parkinson and Movement Disorder Society.

DOI: 10.1002/mds.28415
PubMed: 33332680


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Variability of Movement Disorders: The Influence of Sensation, Action, Cognition, and Emotions.</title>
<author>
<name sortKey="Berlot, Rok" sort="Berlot, Rok" uniqKey="Berlot R" first="Rok" last="Berlot">Rok Berlot</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Neurology, University Medical Centre Ljubljana, Ljubljana, Slovenia.</nlm:affiliation>
<country xml:lang="fr">Slovénie</country>
<wicri:regionArea>Department of Neurology, University Medical Centre Ljubljana, Ljubljana</wicri:regionArea>
<wicri:noRegion>Ljubljana</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Rothwell, John C" sort="Rothwell, John C" uniqKey="Rothwell J" first="John C" last="Rothwell">John C. Rothwell</name>
<affiliation wicri:level="3">
<nlm:affiliation>Department of Clinical and Motor Neuroscience, UCL Institute of Neurology, Queen Square, London, United Kingdom.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Department of Clinical and Motor Neuroscience, UCL Institute of Neurology, Queen Square, London</wicri:regionArea>
<placeName>
<settlement type="city">Londres</settlement>
<region type="country">Angleterre</region>
<region type="région" nuts="1">Grand Londres</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Bhatia, Kailash P" sort="Bhatia, Kailash P" uniqKey="Bhatia K" first="Kailash P" last="Bhatia">Kailash P. Bhatia</name>
<affiliation wicri:level="3">
<nlm:affiliation>Department of Clinical and Motor Neuroscience, UCL Institute of Neurology, Queen Square, London, United Kingdom.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Department of Clinical and Motor Neuroscience, UCL Institute of Neurology, Queen Square, London</wicri:regionArea>
<placeName>
<settlement type="city">Londres</settlement>
<region type="country">Angleterre</region>
<region type="région" nuts="1">Grand Londres</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Kojovi, Maja" sort="Kojovi, Maja" uniqKey="Kojovi M" first="Maja" last="Kojovi">Maja Kojovi</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Neurology, University Medical Centre Ljubljana, Ljubljana, Slovenia.</nlm:affiliation>
<country xml:lang="fr">Slovénie</country>
<wicri:regionArea>Department of Neurology, University Medical Centre Ljubljana, Ljubljana</wicri:regionArea>
<wicri:noRegion>Ljubljana</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:33332680</idno>
<idno type="pmid">33332680</idno>
<idno type="doi">10.1002/mds.28415</idno>
<idno type="wicri:Area/Main/Corpus">000076</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000076</idno>
<idno type="wicri:Area/Main/Curation">000076</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000076</idno>
<idno type="wicri:Area/Main/Exploration">000076</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Variability of Movement Disorders: The Influence of Sensation, Action, Cognition, and Emotions.</title>
<author>
<name sortKey="Berlot, Rok" sort="Berlot, Rok" uniqKey="Berlot R" first="Rok" last="Berlot">Rok Berlot</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Neurology, University Medical Centre Ljubljana, Ljubljana, Slovenia.</nlm:affiliation>
<country xml:lang="fr">Slovénie</country>
<wicri:regionArea>Department of Neurology, University Medical Centre Ljubljana, Ljubljana</wicri:regionArea>
<wicri:noRegion>Ljubljana</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Rothwell, John C" sort="Rothwell, John C" uniqKey="Rothwell J" first="John C" last="Rothwell">John C. Rothwell</name>
<affiliation wicri:level="3">
<nlm:affiliation>Department of Clinical and Motor Neuroscience, UCL Institute of Neurology, Queen Square, London, United Kingdom.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Department of Clinical and Motor Neuroscience, UCL Institute of Neurology, Queen Square, London</wicri:regionArea>
<placeName>
<settlement type="city">Londres</settlement>
<region type="country">Angleterre</region>
<region type="région" nuts="1">Grand Londres</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Bhatia, Kailash P" sort="Bhatia, Kailash P" uniqKey="Bhatia K" first="Kailash P" last="Bhatia">Kailash P. Bhatia</name>
<affiliation wicri:level="3">
<nlm:affiliation>Department of Clinical and Motor Neuroscience, UCL Institute of Neurology, Queen Square, London, United Kingdom.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Department of Clinical and Motor Neuroscience, UCL Institute of Neurology, Queen Square, London</wicri:regionArea>
<placeName>
<settlement type="city">Londres</settlement>
<region type="country">Angleterre</region>
<region type="région" nuts="1">Grand Londres</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Kojovi, Maja" sort="Kojovi, Maja" uniqKey="Kojovi M" first="Maja" last="Kojovi">Maja Kojovi</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Neurology, University Medical Centre Ljubljana, Ljubljana, Slovenia.</nlm:affiliation>
<country xml:lang="fr">Slovénie</country>
<wicri:regionArea>Department of Neurology, University Medical Centre Ljubljana, Ljubljana</wicri:regionArea>
<wicri:noRegion>Ljubljana</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Movement disorders : official journal of the Movement Disorder Society</title>
<idno type="eISSN">1531-8257</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Patients with movement disorders experience fluctuations unrelated to disease progression or treatment. Extrinsic factors that contribute to the variable expression of movement disorders are environment related. They influence the expression of movement disorders through sensory-motor interactions and include somatosensory, visual, and auditory stimuli. Examples of somatosensory effects are stimulus sensitivity of myoclonus on touch and sensory amelioration in dystonia but also some less-appreciated effects on parkinsonian tremor and gait. Changes in visual input may affect practically all types of movement disorders, either by loss of its compensatory role or by disease-related alterations in the pathways subserving visuomotor integration. The interaction between auditory input and motor function is reflected in simple protective reflexes and in complex behaviors such as singing or dancing. Various expressions range from the effect of music on parkinsonian bradykinesia to tics. Changes in body position affect muscle tone and may result in marked fluctuations of rigidity or may affect dystonic manifestations. Factors intrinsic to the patient are related to their voluntary activity and cognitive, motivational, and emotional states. Depending on the situation or disease, they may improve or worsen movement disorders. We discuss various factors that can influence the phenotypic variability of movement disorders, highlighting the potential mechanisms underlying these manifestations. We also describe how motor fluctuations can be provoked during the clinical assessment to help reach the diagnosis and appreciated to understand complaints that seem discrepant with objective findings. We summarize advice and interventions based on the variability of movement disorders that may improve patients' functioning in everyday life. © 2020 International Parkinson and Movement Disorder Society.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="Publisher" Owner="NLM">
<PMID Version="1">33332680</PMID>
<DateRevised>
<Year>2020</Year>
<Month>12</Month>
<Day>17</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1531-8257</ISSN>
<JournalIssue CitedMedium="Internet">
<PubDate>
<Year>2020</Year>
<Month>Dec</Month>
<Day>17</Day>
</PubDate>
</JournalIssue>
<Title>Movement disorders : official journal of the Movement Disorder Society</Title>
<ISOAbbreviation>Mov Disord</ISOAbbreviation>
</Journal>
<ArticleTitle>Variability of Movement Disorders: The Influence of Sensation, Action, Cognition, and Emotions.</ArticleTitle>
<ELocationID EIdType="doi" ValidYN="Y">10.1002/mds.28415</ELocationID>
<Abstract>
<AbstractText>Patients with movement disorders experience fluctuations unrelated to disease progression or treatment. Extrinsic factors that contribute to the variable expression of movement disorders are environment related. They influence the expression of movement disorders through sensory-motor interactions and include somatosensory, visual, and auditory stimuli. Examples of somatosensory effects are stimulus sensitivity of myoclonus on touch and sensory amelioration in dystonia but also some less-appreciated effects on parkinsonian tremor and gait. Changes in visual input may affect practically all types of movement disorders, either by loss of its compensatory role or by disease-related alterations in the pathways subserving visuomotor integration. The interaction between auditory input and motor function is reflected in simple protective reflexes and in complex behaviors such as singing or dancing. Various expressions range from the effect of music on parkinsonian bradykinesia to tics. Changes in body position affect muscle tone and may result in marked fluctuations of rigidity or may affect dystonic manifestations. Factors intrinsic to the patient are related to their voluntary activity and cognitive, motivational, and emotional states. Depending on the situation or disease, they may improve or worsen movement disorders. We discuss various factors that can influence the phenotypic variability of movement disorders, highlighting the potential mechanisms underlying these manifestations. We also describe how motor fluctuations can be provoked during the clinical assessment to help reach the diagnosis and appreciated to understand complaints that seem discrepant with objective findings. We summarize advice and interventions based on the variability of movement disorders that may improve patients' functioning in everyday life. © 2020 International Parkinson and Movement Disorder Society.</AbstractText>
<CopyrightInformation>© 2020 International Parkinson and Movement Disorder Society.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Berlot</LastName>
<ForeName>Rok</ForeName>
<Initials>R</Initials>
<Identifier Source="ORCID">https://orcid.org/0000-0002-6064-2174</Identifier>
<AffiliationInfo>
<Affiliation>Department of Neurology, University Medical Centre Ljubljana, Ljubljana, Slovenia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Rothwell</LastName>
<ForeName>John C</ForeName>
<Initials>JC</Initials>
<Identifier Source="ORCID">https://orcid.org/0000-0003-1367-6467</Identifier>
<AffiliationInfo>
<Affiliation>Department of Clinical and Motor Neuroscience, UCL Institute of Neurology, Queen Square, London, United Kingdom.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Bhatia</LastName>
<ForeName>Kailash P</ForeName>
<Initials>KP</Initials>
<Identifier Source="ORCID">https://orcid.org/0000-0001-8185-286X</Identifier>
<AffiliationInfo>
<Affiliation>Department of Clinical and Motor Neuroscience, UCL Institute of Neurology, Queen Square, London, United Kingdom.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Kojović</LastName>
<ForeName>Maja</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Department of Neurology, University Medical Centre Ljubljana, Ljubljana, Slovenia.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D016454">Review</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>12</Month>
<Day>17</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Mov Disord</MedlineTA>
<NlmUniqueID>8610688</NlmUniqueID>
<ISSNLinking>0885-3185</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">dystonia; Parkinson's disease; examination; fluctuation; neurophysiology</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2020</Year>
<Month>09</Month>
<Day>14</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2020</Year>
<Month>11</Month>
<Day>02</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2020</Year>
<Month>11</Month>
<Day>16</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>12</Month>
<Day>17</Day>
<Hour>17</Hour>
<Minute>20</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>12</Month>
<Day>18</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>12</Month>
<Day>18</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>aheadofprint</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">33332680</ArticleId>
<ArticleId IdType="doi">10.1002/mds.28415</ArticleId>
</ArticleIdList>
<ReferenceList>
<Title>References</Title>
<Reference>
<Citation>Espay AJ, Aybek S, Carson A, et al. Current concepts in diagnosis and treatment of functional neurological disorders. JAMA Neurol 2018;75:1132-1141.</Citation>
</Reference>
<Reference>
<Citation>Jalloul N. Wearable sensors for the monitoring of movement disorders. Biomed J 2018;41:249-253.</Citation>
</Reference>
<Reference>
<Citation>Monje MHG, Foffani G, Obeso J, Sánchez-Ferro Á. New sensor and wearable technologies to aid in the diagnosis and treatment monitoring of Parkinson's disease. Annu Rev Biomed Eng 2019;21:111-143.</Citation>
</Reference>
<Reference>
<Citation>Fasano A, Mancini M. Wearable-based mobility monitoring: the long road ahead. Lancet Neurol 2020;19:378-379.</Citation>
</Reference>
<Reference>
<Citation>Rosén I, Asanuma H. Peripheral afferent inputs to the forelimb area of the monkey motor cortex: input-output relations. Exp Brain Res 1972;14:257-273.</Citation>
</Reference>
<Reference>
<Citation>Hallett M, Chadwick D, Adam J, Marsden CD. Reticular reflex myoclonus: a physiological type of human post hypoxic myoclonus. J Neurol Neurosurg Psychiatry 1977;40:253-264.</Citation>
</Reference>
<Reference>
<Citation>Greene PE, Bressman S. Exteroceptive and interoceptive stimuli in dystonia. Mov Disord 1998;13:549-551.</Citation>
</Reference>
<Reference>
<Citation>Ramos VFML, Karp BI, Hallett M. Tricks in dystonia: ordering the complexity. J Neurol Neurosurg Psychiatry 2014;85:987-993.</Citation>
</Reference>
<Reference>
<Citation>Naumann M, Magyar-Lehmann S, Reiners K, Erbguth F, Leenders KL. Sensory tricks in cervical dystonia: perceptual dysbalance of parietal cortex modulates frontal motor programming. Ann Neurol 2000;47:322-328.</Citation>
</Reference>
<Reference>
<Citation>Gilman S, Vilensky JA, Morecraft RW, Cook JA. Denny-Brown's views on the pathophysiology of dystonia. J Neurol Sci 1999;167:142-147.</Citation>
</Reference>
<Reference>
<Citation>Kaji R, Rothwell JC, Katayama M, et al. Tonic vibration reflex and muscle afferent block in writer's cramp. Ann Neurol 1995;38:155-162.</Citation>
</Reference>
<Reference>
<Citation>Tempel LW, Perlmutter JS. Abnormal vibration-induced cerebral blood flow responses in idiopathic dystonia. Brain 1990;113:691-707.</Citation>
</Reference>
<Reference>
<Citation>Peppe A, Paravati S, Baldassarre MG, et al. Proprioceptive focal stimulation (Equistasi®) may improve the quality of gait in middle-moderate Parkinson's disease patients. Double-blind, double-dummy, randomized, crossover, Italian multicentric study. Front Neurol 2019;10:998.</Citation>
</Reference>
<Reference>
<Citation>Goetz CG. Jean-Martin Charcot and his vibratory chair for Parkinson disease. Neurology 2009;73:475-478.</Citation>
</Reference>
<Reference>
<Citation>Pohl C, Happe J, Klockgether T. Cooling improves the writing performance of patients with writer's cramp. Mov Disord 2002;17:1341-1344.</Citation>
</Reference>
<Reference>
<Citation>Kim JS, An JY, Lee KS, Kim HT. Cooling can relieve the difficulty of playing the tuba in a patient with embouchure dystonia. Mov Disord 2007;22:2291-2292.</Citation>
</Reference>
<Reference>
<Citation>Mauritz KH, Dichgans J, Hufschmidt A. Quantitative analysis of stance in late cortical cerebellar atrophy of the anterior lobe and other forms of cerebellar ataxia. Brain 1979;102:461-482.</Citation>
</Reference>
<Reference>
<Citation>Purdon MJ. The Basal Ganglia and Posture. London, England: Lippincott; 1967.</Citation>
</Reference>
<Reference>
<Citation>Kitamura J, Nakagawa H, Iinuma K, et al. Visual influence on center of contact pressure in advanced Parkinson's disease. Arch Phys Med Rehabil 1993;74:1107-1112.</Citation>
</Reference>
<Reference>
<Citation>Sarlegna FR, Sainburg RL. The roles of vision and proprioception in the planning of reaching movements. Adv Exp Med Biol 2009;629:317-335.</Citation>
</Reference>
<Reference>
<Citation>Feys P, Helsen W, Buekers M, et al. The effect of changed visual feedback on intention tremor in multiple sclerosis. Neurosci Lett 2006;394:17-21.</Citation>
</Reference>
<Reference>
<Citation>Sanes JN, Lewitt PA, Mauritz KH. Visual and mechanical control of postural and kinetic tremor in cerebellar system disorders. J Neurol Neurosurg Psychiatry 1988;51:934-943.</Citation>
</Reference>
<Reference>
<Citation>Patla AE, Niechwiej E, Racco V, Goodale MA. Understanding the contribution of binocular vision to the control of adaptive locomotion. Exp Brain Res 2002;142:551-561.</Citation>
</Reference>
<Reference>
<Citation>Tan T, Almeida QJ, Rahimi F. Proprioceptive deficits in Parkinson's disease patients with freezing of gait. Neuroscience 2011;192:746-752.</Citation>
</Reference>
<Reference>
<Citation>Patla AE, Vickers JN. Where and when do we look as we approach and step over an obstacle in the travel path? Neuroreport 1997;8:3661-3665.</Citation>
</Reference>
<Reference>
<Citation>Rahman S, Griffin HJ, Quinn NP, Jahanshahi M. The factors that induce or overcome freezing of gait in Parkinson's disease. Behav Neurol 2008;19:127-136.</Citation>
</Reference>
<Reference>
<Citation>Hadj-Bouziane F, Benatru I, Brovelli A, et al. Advanced Parkinson's disease effect on goal-directed and habitual processes involved in visuomotor associative learning. Front Hum Neurosci 2013;6:351.</Citation>
</Reference>
<Reference>
<Citation>Glickstein M. How are visual areas of the brain connected to motor areas for the sensory guidance of movement? Trends Neurosci 2000;23:613-617.</Citation>
</Reference>
<Reference>
<Citation>Artieda J, Obeso JA. The pathophysiology and pharmacology of photic cortical reflex myoclonus. Ann Neurol 1993;34:175-184.</Citation>
</Reference>
<Reference>
<Citation>Saron CD, Schroeder CE, Foxe JJ, Vaughan HG. Visual activation of frontal cortex: segregation from occipital activity. Brain Res Cogn 2001;12:75-88.</Citation>
</Reference>
<Reference>
<Citation>Thut G, Hauert CA, Blanke O, et al. Visually induced activity in human frontal motor areas during simple visuomotor performance. Neuroreport 2000;11:2843-2848.</Citation>
</Reference>
<Reference>
<Citation>Vaudano AE, Ruggieri A, Avanzini P, et al. Photosensitive epilepsy is associated with reduced inhibition of alpha rhythm generating networks. Brain 2017;140:981-997.</Citation>
</Reference>
<Reference>
<Citation>Rubboli G, Meletti S, Gardella E, et al. Photic reflex myoclonus: a neurophysiological study in progressive myoclonus epilepsies. Epilepsia 1999;40:50-58.</Citation>
</Reference>
<Reference>
<Citation>Patel N, Jankovic J, Hallett M. Sensory aspects of movement disorders. Lancet Neurol 2014;13:100-112.</Citation>
</Reference>
<Reference>
<Citation>Tavy DLJ, Van Woerkom TCAM, Bots GTAM, Endtz LJ. Persistence of the blink reflex to sudden illumination in a comatose patient: a clinical and pathologic study. Arch Neurol 1984;41:323-324.</Citation>
</Reference>
<Reference>
<Citation>Yeomans JS, Frankland PW. The acoustic startle reflex: neurons and connections. Brain Res Rev 1995;21:301-314.</Citation>
</Reference>
<Reference>
<Citation>Karpati FJ, Giacosa C, Foster NEV, Penhune VB, Hyde KL. Dance and the brain: a review. Ann N Y Acad Sci 2015;1337:140-146.</Citation>
</Reference>
<Reference>
<Citation>Zatorre RJ, Chen JL, Penhune VB. When the brain plays music: auditory-motor interactions in music perception and production. Nat Rev Neurosci 2007;8:547-558.</Citation>
</Reference>
<Reference>
<Citation>Kojović M, Cordivari C, Bhatia K. Myoclonic disorders: a practical approach for diagnosis and treatment. Ther Adv Neurol Disord 2011;4:47-62.</Citation>
</Reference>
<Reference>
<Citation>Colebatch JG. Vestibular evoked potentials. Curr Opin Neurol 2001;14:21-26.</Citation>
</Reference>
<Reference>
<Citation>Cohen BH, Davidson RJ, Senulis JA, Saron CD, Weisman DR. Muscle tension patterns during auditory attention. Biol Psychol 1992;33:133-156.</Citation>
</Reference>
<Reference>
<Citation>Chen JL, Penhune VB, Zatorre RJ. Listening to musical rhythms recruits motor regions of the brain. Cereb Cortex 2008;18:2844-2854.</Citation>
</Reference>
<Reference>
<Citation>Thaut MH, Rathbun JA, Miller RA. Music versus metronome timekeeper in a rhythmic motor task. Int J Arts Med 1997;5:4-12.</Citation>
</Reference>
<Reference>
<Citation>Ghai S, Ghai I, Schmitz G, Effenberg AO. Effect of rhythmic auditory cueing on parkinsonian gait: a systematic review and meta-analysis. Sci Rep 2018;8:506.</Citation>
</Reference>
<Reference>
<Citation>Nascimento LR, de Oliveira CQ, Ada L, Michaelsen SM, Teixeira-Salmela LF. Walking training with cueing of cadence improves walking speed and stride length after stroke more than walking training alone: a systematic review. J Physiother 2015;61:10-15.</Citation>
</Reference>
<Reference>
<Citation>Giovannelli F, Banfi C, Borgheresi A, et al. The effect of music on corticospinal excitability is related to the perceived emotion: a transcranial magnetic stimulation study. Cortex 2013;49:702-710.</Citation>
</Reference>
<Reference>
<Citation>Bodeck S, Lappe C, Evers S. Tic-reducing effects of music in patients with Tourette's syndrome: self-reported and objective analysis. J Neurol Sci 2015;352:41-47.</Citation>
</Reference>
<Reference>
<Citation>Leckman JF, Vaccarino FM, Kalanithi PSA, Rothenberger A. Annotation: Tourette syndrome: a relentless drumbeat - driven by misguided brain oscillations. J Child Psychol Psychiatry 2006;47:537-550.</Citation>
</Reference>
<Reference>
<Citation>Bhattacharya J, Petsche H, Pereda E. Long-range synchrony in the gamma band: role in music perception. J Neurosci 2001;21:6329-6337.</Citation>
</Reference>
<Reference>
<Citation>Kojović M, Pareés I, Sadnicka A, et al. The brighter side of music in dystonia. Arch Neurol 2012;69:917-919.</Citation>
</Reference>
<Reference>
<Citation>Sacks O. The power of music. Brain 2006;129:2528-2532.</Citation>
</Reference>
<Reference>
<Citation>Thaut MH, McIntosh GC, Rice RR, Miller RA, Rathbun J, Brault JM. Rhythmic auditory stimulation in gait training for Parkinson's disease patients. Mov Disord 1996;11:193-200.</Citation>
</Reference>
<Reference>
<Citation>Bella SD, Benoit CE, Farrugia N, Schwartze M, Kotz SA. Effects of musically cued gait training in Parkinson's disease: beyond a motor benefit. Ann N Y Acad Sci 2015;1337:77-85.</Citation>
</Reference>
<Reference>
<Citation>Markham CH. Vestibular control of muscular tone and posture. Can J Neurol Sci 1987;14:493-496.</Citation>
</Reference>
<Reference>
<Citation>Takakusaki K, Chiba R, Nozu T, Okumura T. Brainstem control of locomotion and muscle tone with special reference to the role of the mesopontine tegmentum and medullary reticulospinal systems. J Neural Transm 2016;123:695-729.</Citation>
</Reference>
<Reference>
<Citation>Broussolle E, Krack P, Thobois S, Xie-Brustolin J, Pollak P, Goetz CG. Contribution of Jules Froment to the study of parkinsonian rigidity. Mov Disord 2007;22:909-914.</Citation>
</Reference>
<Reference>
<Citation>Bronstein A, Brandt T, Woolaccott MH, Nutt JH. Clinical Disorders of Balance, Posture and Gait. 2nd ed. London: Arnold Press; 2004.</Citation>
</Reference>
<Reference>
<Citation>Klein C, Fahn S. Translation of Oppenheim's 1911 Paper on dystonia. Mov Disord 2013;28:851-862.</Citation>
</Reference>
<Reference>
<Citation>Fenney A, Jog MS, Duval C. Short-term variability in amplitude and motor topography of whole-body involuntary movements in Parkinson's disease dyskinesias and in Huntington's chorea. Clin Neurol Neurosurg 2008;110:160-167.</Citation>
</Reference>
<Reference>
<Citation>Chen R, Hallett M. The time course of changes in motor cortex excitability associated with voluntary movement. Can J Neurol Sci 1999;26:163-169.</Citation>
</Reference>
<Reference>
<Citation>Sanger TD, Chen D, Fehlings DL, et al. Definition and classification of hyperkinetic movements in childhood. Mov Disord 2010;25:1538-1549.</Citation>
</Reference>
<Reference>
<Citation>Tokimura H, Tokimura Y, Oliviero A, Asakura T, Rothwell JC. Speech-induced changes in corticospinal excitability. Ann Neurol 1996;40:628-634.</Citation>
</Reference>
<Reference>
<Citation>Fahn S. Clinical variants of idiopathic torsion dystonia. J Neurol Neurosurg Psychiatry 1989;(Suppl):96-100.</Citation>
</Reference>
<Reference>
<Citation>Quinn N, Bhatia K. The man who walks backwards. J R Soc Med 2002;95:273-273.</Citation>
</Reference>
<Reference>
<Citation>Rana AQ, Boke BN. Difference of foot posture in two cases of exercise-induced foot dystonia. Eur Neurol 2013;69:65-66.</Citation>
</Reference>
<Reference>
<Citation>Duval C, Daneault J-F, Hutchison WD, Sadikot AF. A brain network model explaining tremor in Parkinson's disease. Neurobiol Dis 2016;85:49-59.</Citation>
</Reference>
<Reference>
<Citation>Helmich RC, Hallett M, Deuschl G, Toni I, Bloem BR. Cerebral causes and consequences of parkinsonian resting tremor: a tale of two circuits? Brain 2012;135:3206-3226.</Citation>
</Reference>
<Reference>
<Citation>Kojović M, Bhatia KP. Bringing order to higher order motor disorders. J Neurol 2018;266:797-805.</Citation>
</Reference>
<Reference>
<Citation>Berlot E, Prichard G, O'Reilly J, Ejaz N, Diedrichsen J. Ipsilateral finger representations in the sensorimotor cortex are driven by active movement processes, not passive sensory input. J Neurophysiol 2019;121:418-426.</Citation>
</Reference>
<Reference>
<Citation>Duque J, Mazzocchio R, Dambrosia J, Murase N, Olivier E, Cohen LG. Kinematically specific interhemispheric inhibition operating in the process of generation of a voluntary movement. Cereb Cortex 2005;15:588-593.</Citation>
</Reference>
<Reference>
<Citation>Bologna M, Paparella G, Fasano A, Hallett M, Berardelli A. Evolving concepts on bradykinesia. Brain 2020;143:727-750.</Citation>
</Reference>
<Reference>
<Citation>Benecke R, Rothwell JC, Dick JPR, Day BL, Marsden CD. Performance of simultaneous movements in patients with Parkinson's disease. Brain 1986;109:739-757.</Citation>
</Reference>
<Reference>
<Citation>Schwab RS, Chafetz ME, Walker S. Control of two simultaneous voluntary motor acts in normals and in parkinsonism. Arch Neurol Psychiatry 1954;72:591-598.</Citation>
</Reference>
<Reference>
<Citation>Miller EK, Cohen JD. An integrative theory of prefrontal cortex function. Annu Rev Neurosci 2001;24:167-202.</Citation>
</Reference>
<Reference>
<Citation>Koller WC, Biary NM. Volitional control of involuntary movements. Mov Disord 1989;4:153-156.</Citation>
</Reference>
<Reference>
<Citation>Blakemore RL, MacAskill MR, Myall DJ, Anderson TJ. Volitional suppression of parkinsonian resting tremor. Mov Disord Clin Pract 2019;6:470-478.</Citation>
</Reference>
<Reference>
<Citation>Bonomo R, Latorre A, Balint B, et al. Voluntary inhibitory control of chorea: a case series. Mov Disord Clin Pract 2020;7:308-312.</Citation>
</Reference>
<Reference>
<Citation>Avery MC, Krichmar JL. Neuromodulatory systems and their interactions: a review of models, theories, and experiments. Front Neural Circuits 2017;11:108.</Citation>
</Reference>
<Reference>
<Citation>Vitrac C, Benoit-Marandmarianne M. Monoaminergic modulation of motor cortex function. Front Neural Circuits 2017;11:72.</Citation>
</Reference>
<Reference>
<Citation>Redgrave P, Rodriguez M, Smith Y, et al. Goal-directed and habitual control in the basal ganglia: implications for Parkinson's disease. Nat Rev Neurosci 2010;11:760-772.</Citation>
</Reference>
<Reference>
<Citation>Yogev-Seligmann G, Hausdorff JM, Giladi N. The role of executive function and attention in gait. Mov Disord 2008;23:329-342. quiz 472.</Citation>
</Reference>
<Reference>
<Citation>Hausdorff JM, Balash J, Giladi N. Effects of cognitive challenge on gait variability in patients with Parkinson's disease. J Geriatr Psychiatry Neurol 2003;16:53-58.</Citation>
</Reference>
<Reference>
<Citation>Bond JM, Morris M. Goal-directed secondary motor tasks: their effects on gait in subjects with Parkinson disease. Arch Phys Med Rehabil 2000;81:110-116.</Citation>
</Reference>
<Reference>
<Citation>Johansen-Berg H, Matthews PM. Attention to movement modulates activity in sensori-motor areas, including primary motor cortex. Exp Brain Res 2002;142:13-24.</Citation>
</Reference>
<Reference>
<Citation>Rowe J, Friston K, Frackowiak R, Passingham R. Attention to action: specific modulation of corticocortical interactions in humans. Neuroimage 2002;17:988-998.</Citation>
</Reference>
<Reference>
<Citation>Wu T, Zhang J, Hallett M, Feng T, Hou Y, Chan P. Neural correlates underlying Micrographia in Parkinson's disease. Brain 2016;139:144-160.</Citation>
</Reference>
<Reference>
<Citation>Rubinstein TC, Giladi N, Hausdorff JM. The power of cueing to circumvent dopamine deficits: a review of physical therapy treatment of gait disturbances in Parkinson's disease. Mov Disord 2002;17:1148-1160.</Citation>
</Reference>
<Reference>
<Citation>Narayanan NS, Laubach M. Top-down control of motor cortex ensembles by dorsomedial prefrontal cortex. Neuron 2006;52:921-931.</Citation>
</Reference>
<Reference>
<Citation>Kaski D. Practical tips on diagnosing and managing tremor. Prescriber 2015;26:13-16.</Citation>
</Reference>
<Reference>
<Citation>Dirkx MF, Zach H, van Nuland AJ, Bloem BR, Toni I, Helmich RC. Cognitive load amplifies Parkinson's tremor through excitatory network influences onto the thalamus. Brain 2020;143:1498-1511.</Citation>
</Reference>
<Reference>
<Citation>Mendonça DA, Jog MS. Tasks of attention augment rigidity in mild Parkinson disease. Can J Neurol Sci 2008;35:501-505.</Citation>
</Reference>
<Reference>
<Citation>Huang YH, Mogenson GJ. Neural pathways mediating drinking and feeding in rats. Exp Neurol 1972;37:269-286.</Citation>
</Reference>
<Reference>
<Citation>Pijnenburg AJJ, WMM H, Van Der JAM H, Van Rossum JM. Effects of chemical stimulation of the mesolimbic dopamine system upon locomotor activity. Eur J Pharmacol 1976;35:45-58.</Citation>
</Reference>
<Reference>
<Citation>Sawada M, Kato K, Kunieda T, et al. Function of the nucleus accumbens in motor control during recovery after spinal cord injury. Science 2015;350:98-101.</Citation>
</Reference>
<Reference>
<Citation>Souques AA. Kinesie paradoxicale. Rev Neurol 1921;37:559-560.</Citation>
</Reference>
<Reference>
<Citation>Bonanni L, Thomas A, Anzellotti F, et al. Protracted benefit from paradoxical kinesia in typical and atypical parkinsonisms. Neurol Sci 2010;31:751-756.</Citation>
</Reference>
<Reference>
<Citation>Glickstein M, Stein J. Paradoxical movement in Parkinson's disease. Trends Neurosci 1991;14:480-482.</Citation>
</Reference>
<Reference>
<Citation>Kojović M, Mir P, Trender-Gerhard I, et al. Motivational modulation of bradykinesia in Parkinson's disease off and on dopaminergic medication. J Neurol 2014;261:1080-1089.</Citation>
</Reference>
<Reference>
<Citation>Hälbig TD, Borod JC, Frisina PG, et al. Emotional processing affects movement speed. J Neural Transm 2011;118:1319-1322.</Citation>
</Reference>
<Reference>
<Citation>van Loon AM, van den Wildenberg WPM, van Stegeren AH, Hajcak G, Ridderinkhof KR. Emotional stimuli modulate readiness for action: a transcranial magnetic stimulation study. Cogn Affect Behav Neurosci 2010;10:174-181.</Citation>
</Reference>
<Reference>
<Citation>Fesl G, Demmel M, Albrecht J, et al. Bad mood: bad activation?: the influence of emotions on the BOLD signal during finger tapping. Clin Neuroradiol 2010;20:153-159.</Citation>
</Reference>
<Reference>
<Citation>Coombes SA, Cauraugh JH, Janelle CM. Emotional state and initiating cue alter central and peripheral motor processes. Emotion 2007;7(2):275-284.</Citation>
</Reference>
<Reference>
<Citation>Coombes SA, Tandonnet C, Fujiyama H, Janelle CM, Cauraugh JH, Summers JJ. Emotion and motor preparation: a transcranial magnetic stimulation study of corticospinal motor tract excitability. Cogn Affect Behav Neurosci 2009;9:380-388.</Citation>
</Reference>
<Reference>
<Citation>Marsden CD, Meadows JC. The effect of adrenaline on the contraction of human muscle: one mechanism whereby adrenaline increases the amplitude of physiological tremor. J Physiol 1968;194:70-1P.</Citation>
</Reference>
<Reference>
<Citation>Marsden CD, Owen DAL. Mechanisms underlying emotional variation in parkinsonian tremor. Neurology 1967;17:711-715.</Citation>
</Reference>
<Reference>
<Citation>Jankovic J. Motor fluctuations and dyskinesias in Parkinson's disease: clinical manifestations. Mov Disord 2005;20:S11-S16.</Citation>
</Reference>
<Reference>
<Citation>Zach H, Dirkx MF, Pasman JW, Bloem BR, Helmich RC. Cognitive stress reduces the effect of levodopa on Parkinson's resting tremor. CNS Neurosci Ther 2017;23:209-215.</Citation>
</Reference>
<Reference>
<Citation>Giladi N, Hausdorff JM. The role of mental function in the pathogenesis of freezing of gait in Parkinson's disease. J Neurol Sci 2006;248:173-176.</Citation>
</Reference>
<Reference>
<Citation>Michalak J, Troje NF, Fischer J, Vollmar P, Heidenreich T, Schulte D. Embodiment of sadness and depression: gait patterns associated with dysphoric mood. Psychosom Med 2009;71:580-587.</Citation>
</Reference>
<Reference>
<Citation>Katsikitis M, Pilowsky I. A controlled quantitative study of facial expression in Parkinson's disease and depression. J Nerv Ment Dis 1991;179:683-688.</Citation>
</Reference>
<Reference>
<Citation>Kulisevsky J, Pagonabarraga J, Pascual-Sedano B, Gironell A, García-Sánchez C, Martínez-Corral M. Motor changes during sertraline treatment in depressed patients with Parkinson's disease. Eur J Neurol 2008;15:953-959.</Citation>
</Reference>
<Reference>
<Citation>Morgante F, Edwards MJ, Espay AJ. Psychogenic movement disorders. Continuum 2013;19:1383-1396.</Citation>
</Reference>
<Reference>
<Citation>Edwards MJ, Bhatia KP. Functional (psychogenic) movement disorders: merging mind and brain. Lancet Neurol 2012;11:250-260.</Citation>
</Reference>
<Reference>
<Citation>Munts AG, Koehler PJ. How psychogenic is dystonia? Views from past to present. Brain 2010;133:1552-1564.</Citation>
</Reference>
<Reference>
<Citation>Edwards MJ, Fotopoulou A, Pareés I. Neurobiology of functional (psychogenic) movement disorders. Curr Opin Neurol 2013;26:442-447.</Citation>
</Reference>
<Reference>
<Citation>Cohen L. Interaction between limbs during bimanual voluntary activity. Brain 1970;93:259-272.</Citation>
</Reference>
<Reference>
<Citation>Peters M. Simultaneous performance of two motor activities: the factor of timing. Neuropsychologia 1977;15:461-465.</Citation>
</Reference>
<Reference>
<Citation>Oliveira RM, Gurd JM, Nixon P, Marshall JC, Passingham RE. Micrographia in Parkinson's disease: the effect of providing external cues. J Neurol Neurosurg Psychiatry 1997;63:429-433.</Citation>
</Reference>
<Reference>
<Citation>Robles-García V, Arias P, Sanmartín G, et al. Motor facilitation during real-time movement imitation in Parkinson's disease: a virtual reality study. Park Relat Disord 2013;19:1123-1129.</Citation>
</Reference>
<Reference>
<Citation>Kishore A, Espay AJ, Marras C, et al. Unilateral versus bilateral tasks in early asymmetric Parkinson's disease: differential effects on bradykinesia. Mov Disord 2007;22:328-333.</Citation>
</Reference>
<Reference>
<Citation>Goetz CG, Tilley BC, Shaftman SR, et al. Movement Disorder Society-sponsored revision of the unified Parkinson's disease rating scale (MDS-UPDRS): scale presentation and clinimetric testing results. Mov Disord 2008;23:2129-2170.</Citation>
</Reference>
<Reference>
<Citation>Zach H, Dirkx M, Bloem BR, Helmich RC. The clinical evaluation of Parkinson's tremor. J Parkinsons Dis 2015;5:471-474.</Citation>
</Reference>
<Reference>
<Citation>Raethjen J, Austermann K, Witt K, Zeuner KE, Papengut F, Deuschl G. Provocation of parkinsonian tremor. Mov Disord 2008;23:1019-1023.</Citation>
</Reference>
<Reference>
<Citation>Cleeves L, Findley LJ. Variability in amplitude of untreated essential tremor. J Neurol Neurosurg Psychiatry 1987;50:704-708.</Citation>
</Reference>
<Reference>
<Citation>Berlot R, Bhatia KP, Kojović M. Pseudodystonia: a new perspective on an old phenomenon. Park Relat Disord 2019;62:44-50.</Citation>
</Reference>
<Reference>
<Citation>Walters AS, McHale D, Sage JI, Hening WA, Bergen M. A blinded study of the suppressibility of involuntary movements in Huntington's chorea, tardive dyskinesia, and L-DOPA-induced chorea. Clin Neuropharmacol 1990;13:236-240.</Citation>
</Reference>
<Reference>
<Citation>Buse J, Enghardt S, Kirschbaum C, Ehrlich S, Roessner V. Tic frequency decreases during short-term psychosocial stress - an experimental study on children with tic disorders. Front Psychiatry 2016;7:84.</Citation>
</Reference>
<Reference>
<Citation>Conelea CA, Woods DW. The influence of contextual factors on tic expression in Tourette's syndrome: a review. J Psychosom Res 2008;65:487-496.</Citation>
</Reference>
<Reference>
<Citation>van der Heide A, Meinders MJ, Speckens AEM, Peerbolte TF, Bloem BR, Helmich RC. Stress and mindfulness in Parkinson's Disease: clinical effects and potential underlying mechanisms. Mov Disord 2020. first published October 23 2020. https://doi.org/10.1002/mds.28345</Citation>
</Reference>
<Reference>
<Citation>Pahwa R, Lyons KE. Essential tremor: differential diagnosis and current therapy. Am J Med 2003;115:134-142.</Citation>
</Reference>
<Reference>
<Citation>Durif F, Vidailhet M, Debilly B, Agid Y. Worsening of levodopa-induced dyskinesias by motor and mental tasks. Mov Disord 1999;14:242-246.</Citation>
</Reference>
<Reference>
<Citation>Kim H, Yoon JH, Nam HS. Efficacy of language-appropriate cueing on micrographia in Korean patients with Parkinson's disease. Geriatr Gerontol Int 2015;15:647-651.</Citation>
</Reference>
<Reference>
<Citation>Nackaerts E, Nieuwboer A, Broeder S, et al. Opposite effects of visual cueing during writing-like movements of different amplitudes in Parkinson's disease. Neurorehabil Neural Repair 2016;30:431-439.</Citation>
</Reference>
<Reference>
<Citation>Nackaerts E, Nieuwboer A, Farella E. Technology-assisted rehabilitation of writing skills in Parkinson's disease: visual cueing versus intelligent feedback. Parkinsons Dis 2017;2017:9198037.</Citation>
</Reference>
<Reference>
<Citation>Sweeney D, Quinlan LR, Browne P, Richardson M, Meskell P, Ólaighin G. A technological review of wearable cueing devices addressing freezing of gait in Parkinson's disease. Sensors 2019;19:1277.</Citation>
</Reference>
<Reference>
<Citation>Volpe D, Giantin MG, Fasano A. A wearable proprioceptive stabilizer (Equistasi®) for rehabilitation of postural instability in Parkinson's disease: a phase II randomized double-blind, double-dummy, controlled study. PLoS One 2014;9:e112065.</Citation>
</Reference>
<Reference>
<Citation>Han J, Kim E, Jung J, Lee J, Sung H, Kim J. Effect of muscle vibration on spatiotemporal gait parameters in patients with Parkinson's disease. J Phys Ther Sci 2014;26:671-673.</Citation>
</Reference>
<Reference>
<Citation>Camerota F, Celletti C, Suppa A, et al. Focal muscle vibration improves gait in Parkinson's disease: a pilot randomized, controlled trial. Mov Disord 2016;3:559-566.</Citation>
</Reference>
<Reference>
<Citation>De Nunzio AM, Grasso M, Nardone A, Godi M, Schieppati M. Alternate rhythmic vibratory stimulation of trunk muscles affects walking cadence and velocity in Parkinson's disease. Clin Neurophysiol 2010;121:240-247.</Citation>
</Reference>
<Reference>
<Citation>Feys P, Helsen WF, Liu X, et al. Effect of visual information on step-tracking movements in patients with intention tremor due to multiple sclerosis. Mult Scler 2003;9:492-502.</Citation>
</Reference>
<Reference>
<Citation>Gironell A, Ribosa-Nogué R, Pagonabarraga J. Withdrawal of visual feedback in essential tremor. Parkinsonism Relat Disord 2012;18:402-403.</Citation>
</Reference>
<Reference>
<Citation>Lakie M, Walsh EG, Arblaster LA, Villagra F, Roberts RC. Limb temperature and human tremors. J Neurol Neurosurg Psychiatry BMJ Publishing Group 1994;57:35-42.</Citation>
</Reference>
<Reference>
<Citation>Cooper C, Evidente VGH, Hentz JG, Adler CH, Caviness JN, Gwinn-Hardy K. The effect of temperature on hand function in patients with tremor. J Hand Ther 2000;13:276-288.</Citation>
</Reference>
<Reference>
<Citation>Feys P, Helsen W, Liu X, et al. Effects of peripheral cooling on intention tremor in multiple sclerosis. J Neurol Neurosurg Psychiatry 2005;76:373-379.</Citation>
</Reference>
<Reference>
<Citation>Lee HJ, Lee WW, Kim SK, et al. Tremor frequency characteristics in Parkinson's disease under resting-state and stress-state conditions. J Neurol Sci 2016;362:272-277.</Citation>
</Reference>
<Reference>
<Citation>Schlesinger I, Benyakov O, Erikh I, Suraiya S, Schiller Y. Parkinson's disease tremor is diminished with relaxation guided imagery. Mov Disord 2009;24:2059-2062.</Citation>
</Reference>
<Reference>
<Citation>Georgiev D, Križnar NŽ, Pirtošek Z, Kojović M. Sensory trick in levodopa-induced orolingual dystonia in a patient with advanced Parkinson's disease. Mov Disord Clin Pract 2017;4:136-137.</Citation>
</Reference>
<Reference>
<Citation>Lorenzano D, Tansley S, Ezra DG. Sensory trick frames: a new device for blepharospasm patients. J Mov Disord 2019;12:22-26.</Citation>
</Reference>
<Reference>
<Citation>Paulig J, Jabusch H-C, Grossbach M, Boullet L, Altenmueller E. Sensory trick phenomenon improves motor control in pianists with dystonia: prognostic value of glove-effect. Front Psychol 2014;5:1012.</Citation>
</Reference>
<Reference>
<Citation>Lo SE, Gelb M, Frucht SJ. Geste antagonistes in idiopathic lower cranial dystonia. Mov Disord 2007;22:1012-1017.</Citation>
</Reference>
<Reference>
<Citation>Adams WH, Digre KB, Patel BCK, Anderson RL, Warner JEA, Katz BJ. The evaluation of light sensitivity in benign essential blepharospasm. Am J Ophthalmol 2006;142:82-87.</Citation>
</Reference>
<Reference>
<Citation>Covanis A, SRG S, Wilkins AJ. Treatment of photosensitivity. Epilepsia 2004;45:40-45.</Citation>
</Reference>
<Reference>
<Citation>Shprecher D, Kurlan R. The management of tics. Mov Disord 2009;24:15-24.</Citation>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Royaume-Uni</li>
<li>Slovénie</li>
</country>
<region>
<li>Angleterre</li>
<li>Grand Londres</li>
</region>
<settlement>
<li>Londres</li>
</settlement>
</list>
<tree>
<country name="Slovénie">
<noRegion>
<name sortKey="Berlot, Rok" sort="Berlot, Rok" uniqKey="Berlot R" first="Rok" last="Berlot">Rok Berlot</name>
</noRegion>
<name sortKey="Kojovi, Maja" sort="Kojovi, Maja" uniqKey="Kojovi M" first="Maja" last="Kojovi">Maja Kojovi</name>
</country>
<country name="Royaume-Uni">
<region name="Angleterre">
<name sortKey="Rothwell, John C" sort="Rothwell, John C" uniqKey="Rothwell J" first="John C" last="Rothwell">John C. Rothwell</name>
</region>
<name sortKey="Bhatia, Kailash P" sort="Bhatia, Kailash P" uniqKey="Bhatia K" first="Kailash P" last="Bhatia">Kailash P. Bhatia</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/SanteMusiqueV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000106 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000106 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    SanteMusiqueV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:33332680
   |texte=   Variability of Movement Disorders: The Influence of Sensation, Action, Cognition, and Emotions.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:33332680" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a SanteMusiqueV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Mon Mar 8 15:23:44 2021. Site generation: Mon Mar 8 15:23:58 2021